Experiments offer tantalizing clues as to why matter prevails in the universe

Experiments offer tantalizing clues as to why matter prevails in the universe.

A large collaboration of physicists working at the Fermilab Tevatron particle collider has discovered evidence of an explanation for the prevalence of matter over antimatter in the universe. They found that colliding protons in their experiment produced short-lived B meson particles that almost immediately broke down into debris that included slightly more matter than antimatter. The two types of matter annihilate each other, so most of the material coming from these sorts of decays would disappear, leaving an excess of regular matter behind.

This sort of matter/antimatter asymmetry accounts for the fact that just about all the material in the universe is made of the normal matter we’re familiar with. The results are being published this week in papers appearing simultaneously in the APS journals  and Physical Review D.

Physicists have long known about processes described by current theory that would produce tiny excesses of matter, but the amounts the theories predict are far smaller than necessary to create the  we observe. The Tevatron experiments suggest that we are on the verge of accounting for the quantities of matter that exist today. But the truly exciting implication is that the experiment implies that there is new physics, beyond the widely accepted Standard Model, that must be at work. If that’s the case, major scientific developments lie ahead.

The results emerge from a complicated and challenging analysis, and have yet to be confirmed by other experiments. If the matter/ imbalance holds up under the scrutiny of researchers at the  in Europe and competing research groups at Fermilab, it will likely stand as one of the most significant milestones in high-energy physics, according to Roy Briere of Carnegie Mellon University in Pittsburgh. Briere summarizes the experimental results and their implications in a Viewpoint article in the current edition of APS Physics
.

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: